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Abstract

In the Large Hadron Collider (LHC) two proton beams of
similar intensities collide in several interaction points. It
is well known that the head-on collision of two beams of
equal strength can excite coherent modes whose frequen-
cies are separated from the incoherent spectrum of oscil-
lations of individual particles. This can lead to the loss
of Landau damping and possibly to unstable motion. The
beam-beam effect in the LHC is further complicated by a
large number of bunches (2808 per beam), a finite crossing
angle and gaps in the bunch train. The coherent beam-beam
effects under various conditions and operational scenarios
are studied analytically and with multiparticle simulations.
We give an overview of the studies and present proposals
to overcome these difficulties together with possible side
effects.

1 INTRODUCTION

Two colliding beams exert a force on each other which
is defocusing for beams of equal charge as in the case of
LHC. Solutions of the linearized Vlasov equation show that
for round beams and in the case of one bunch per beam with
equal parameters (intensity, beam size, betatron tune) two
coherent dipole modes of oscillations appear: the σ mode,
with a frequency equal to the unperturbed betatron tune,
and the π-mode with a tune shift of Y = 1.21, where Y is
the Yokoya factor [1], times the beam-beam parameter ξ.
In the LHC the situation is complicated by some specific
features which affect coherent beam-beam effects:

• The LHC is operated in the strong-strong regime, i.e.
equally strong beams.

• It has four interaction regions and two independent
rings.

• It has parasitic (long range) interactions and many
(2808) bunches.

• The beams cross at horizontal and vertical angles at
the collision points.

It has been predicted [2, 3] that the coherent π-mode may
not be Landau damped for certain strong-strong conditions.
Therefore an accurate knowledge of the Yokoya factor and
the conditions for the excitation or suppression of coher-
ent modes is highly desirable. In this report we present a
selection of the main coherent effects.

2 SIMULATION AND TOOLS

In a self-consistent model of the coherent interaction, the
distributions of both beams evolve as a consequence of the

mutual interaction and are used at the interaction points to
calculate the force on the individual particles. To evalu-
ate the coherent effects we employ two basic types of ap-
proaches: we study the solutions of the Vlasov equation
using analytic and numerical models such as perturbation
theory or its numerical integration [3, 4]. We further study
the effects using multiparticle tracking. A number of stud-
ies have been done for LHC using the so-called “soft Gaus-
sian model” [5]. This model assumes the force experienced
by a particle when traversing the counter- rotating beam as
originating from a Gaussian beam distribution with vari-
able barycenters and rms beam sizes. This allows the use
of an analytical expression for the forces. This Gaussian
model cannot take into account the non-Gaussian defor-
mations of the distribution and as a result underestimates
the force and yields a Yokoya factor that is slightly smaller
(Y = 1.1 in our case). We therefore use a different approch
for the field evaluation to get quantiatively correct results.
A Hybrid Fast Multipole Method is applied [10] and the
results agree extremely well with the analytical prediction.

3 COHERENT BEAM-BEAM MODES

As a first results we show in Fig.1 the Fourier spectrum
of two bunches colliding head on in one interaction point
(IP). We show the spectral density of the barycentric mo-
tion of 104 particles as a function of the distance to the
unperturbed tune Q, normalized by the beam-beam param-
eter ξ: ω = ν −Q/ξ. The two modes (0-mode, right peak;
π-mode, left peak) are clearly visible with the incoherent
spectrum between, extending between 0 and −ξ. The 0-
mode is at the unperturbed tune (ω = 0) and the π-mode is
outside the incoherent spectrum ( ω = −1.21 ± 0.002) and
therefore cannot be Landau damped. This result accurately
confirms the analytic calculation.

Fourier spectrum of head-on coherent modes
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Figure 1: Head on beam-beam coherent modes.



4 EFFECT OF BROKEN SYMMETRIES

An isolated, discrete π-mode is a potentially dangerous sit-
uation and various proposals were made to suppress this
mode [7, 8]. All proposals rely on the breaking of some
symmetry between the beams. This makes it more difficult
to organize and maintain a collective motion and the mode
cannot develope. Such proposals in pure or modified form
are:

• Different fractional tunes of the two beams.

• Different integer tunes of the two beams for multiple
interaction points.

• Phase advance adjustments of different type for mul-
tiple interaction points.

Although all proposals can succeed to suppress the coher-
ent modes, they may have unwanted side effects which may
lead to operational difficulties or loss of luminosity.

4.1 Intensity differences

The coherent modes only exist in the real strong-strong
regime where the two beams have equal intensities and
beam sizes. For beams of unequal intensities the π-mode
moves closer and closer to the incoherent continuum and
merges into it [2] when the ratio becomes less than 0.6.
As a result the mode can be Landau damped and disap-
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Figure 2: Head on beam-beam coherent modes for two dif-
ferent beam intensity ratios.

pears. This is illustrated in Fig.2 where we plot the coher-
ent modes again, but for intensity ratios of 0.65 (top) and
0.55 (bottom). While for a ratio of 0.65 the mode is at the
edge of the incoherent spectrum, it has merged for 0.55.
The analytical prediction is completely confirmed.

5 OPTICS MODIFICATIONS

Breaking the symmetry between the bunches is an efficient
method to avoid coherent motion of bunches. Changes to
the beam optics such as different tunes of the two beams,
phase advance differences between the interaction point
etc., help to suppress the coherence. Some of these pos-
sible measures we investigate in some more detail.

5.1 Tune differences

Fourier spectrum of coherent modes, Q = 0.312
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Figure 3: Coherent modes with different fractional tunes.

In Fig.3 we show the effect of different fractional tunes.
While the horizontal tune of beam 1 was kept at 0.31, we
have changed the tune of beam 2 to 0.312 (upper figure) and
0.314 (lower figure). The strong coherent modes disappear
for a tune difference above 0.75ξ, proving the principle in
this simply case.

5.2 Separate working points

The LHC has two separate beams colliding in the interac-
tion points, and therefore it is possible to run the two beams
with different working points. Three working points (WP)
have been proposed, based on studies of the incoherent sin-
gle particle dynamics::

WP 1 (Qx,1, Qy,1) = (0.232, 0.242)

WP 2 (Qx,2, Qy,2) = (0.310, 0.320)

WP 3 (Qx,3, Qy,3) = (0.385, 0.395)

However the study [8] has shown that this strategy excites
a new type of resonances where the two beams couple to
resonances of the type: nQx,i + mQx,j = r, e.g.:
1Qx,1 + 2Qx,3 = 1.002 or 2Qx,2 + 1Qx,3 = 1.005. It



can be shown that the coherent mode is moved back into the
incoherent spectrum and is Landau damped, but at the ex-
pense of a small emittance growth. Details can be found in
[8]. This is demonstrated in Fig.4 where we plot the dipole
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Figure 4: Dipole oscillations and emittance growth for
working points 1 and 3.

oscillations and the emittances of the beams as a function of
the number of turns. The working points 1 and 3 are used in
this example. The dipole oscillation does not grow in time,
but the emittance is steadily increased. In Fig.5 we show
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Figure 5: Emittance growth for working points 2 and 3.
The emittance growth until the beams size is larger and the
beam-beam effect lower and outside the resonance stop-
band. ∆x is the distance to the resonance stopband as de-
fined in [8].

another example with the combination of working points
2 and 3. We show the emittance as a function of the turn
number for two distances to the resonance stopband. In the
first case where the distance if large enough (∆x = 0.8),
no oscillation or emittance growths is seen. In the second
case (∆x = 0.7) no oscillation is observed but the emit-
tance of one beam grows until the beam-beam parameters
becomes lower and the beam is outside the stopband of the

resonance and the growth stops.

5.3 Multiple interaction regions

In case of multiple interaction points additional measures
can be employed to break the symmetry. Such possibilities
are phase advance differences and integer tune changes.
Details of the many possible options are given in [11]. We
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Figure 6: Coherent modes for 4 collisions and with differ-
ent integer tunes. Horizontal axis as before but normalized
to 4ξ.

give one instructive example in Fig.6. In the upper fig-
ure we have used the standard tunes (Qx = 64.31, Qy =
59.32) and collide 2 bunches per beam in 4 interaction
points. The modes are again very prominent. The horizon-
tal axis is ω = ν−Q/4ξ and therefore the π-mode appears
at ω = -1.21. The symmetry hides some of the additional
modes. In the lower figure the integer tunes are swapped
between the two planes (Qx = 59.31, Qy = 64.32) and the
modes have disappeared. For the used collision symmetry
it is enough to have unequal parity (odd and even) for the
two beams to obtain practically complete suppression.

5.4 Small tune split

Finally, we present the effect of a small tune split of 0.02
between the two beams. This time both beams have the
same working point to avoid the above problems, but are
separated by± 0.01. No more growth is observed, however
a small beam size asymmetry has developed in both planes,
usually called a flip-flop situation (Fig.7).
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Figure 7: Coherent modes with small tune split, showing a
flip-flop effect.

6 COHERENT MODES FROM LONG
RANGE INTERACTIONS

A feature that is important for colliders with many bunches
is the existence of parasitic (long range) interactions. In the
LHC we have about 120 parasitic interactions around the 4
interaction points. Apart from many other effects, they can
excite coherent modes, just like head on collisions. How-
ever, while in the head on case and for small separation, the
beam-beam force is basically linear, the long range forces
are rather non-linear. Their effects can be studied using
Vlasov perturbation theory or multi particle tracking. De-
tails about the two methods are found in [3, 10]. As an
example we show in Figs.8 and 9 the coherent modes from
multi-particle tracking for single bunches with separation
of 10 σ and 6 σ in the horizontal plane. The basic modes
(0-mode and π-mode) are again visible as in the head-on
case and can be identified as such by analysing the sum or
difference of the centroid motion of the beams. A basic
difference is the sign of the π-mode tune shift. It has the
opposite sign as for the head on case in the plane of separa-
tion and the same sign in the other plane. This is due to the
different focussing properties of separating beams, a very
well-known result. One can now speculate, and it was also
believed in the past, that the tune shifts of opposite sign of
the head on and long range modes can compensate, at least
partially, and return the π-mode into the incoherent spec-
trum, which would allow Landau damping. In the Fig.10
we now plot the coherent modes for combined head on and
long range interactions. The horizontal modes are plotted
for horizontal (left column) and vertical crossing (central
column). The right column shows the spectra for alternat-
ing crossings, i.e. one crossing with horizontal and another
with vertical crossing. The contribution from long range
interaction increases from top (no long range interactions)
to bottom. We observe that while the head on modes re-
main visible, although their amplitude becomes smaller, a
second coherent mode appears on the other side of the in-
coherent spectrum. The whole picture is shifted due to the
long range tune shift. Instead of a compensation we have
now two apparently independent modes on both sides of
the incoherent continuum, a somewhat unexpected result.
An explanation of the above is given in Fig.11 where we

Fourier spectrum of coherent modes, from HFMM
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Figure 8: Coherent beam-beam modes from long range in-
teractions with 10 σ separation in the horizontal plane.
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Figure 9: Coherent beam-beam modes from long range in-
teractions with 6 σ separation in the horizontal plane.

show the eigenfunctions of the two discrete modes appear-
ing at the bottom left of Fig.10. The corresponding eigen-
functions as a function of the amplitude are very different.
While in the first mode (head on case) mainly core particles
participate, the second (long range) mode involves mainly
tail particles with large amplitude Jx. Therefore different
parts of the bunch contribute to the two modes and this is
why the two modes do not compensate. In the case of ver-
tical separation (centre column) only the head on mode is
visible and rapidly increasing its amplitude with increasing



Figure 10: Head on and long range coherent modes in the
horizontal plane with increasing long range contributions
(top to bottom) from crossings in the horizontal plane (left),
vertical plane (centre) and alternating crossing (right).

Figure 11: Coherent beam-beam eigenmodes for head on
(ψ1) and long range (ψ2) modes.

long range contributions. Therefore if the separation is in
the same plane in all interaction regions, the stability in the
other plane may be strongly deteriorated. The problem is
solved with alternating crossings as proposed for the LHC
(right column). Here we observe a small decrease of the
horizontal mode (and the same for the vertical, since now
both planes are equivalent.

7 EFFECT OF CROSSING ANGLE AND
SYNCHROTRON MOTION

So far we have ignored the effect of the crossing angle
and the synchrotron motion. The latter can couple to the
transverse motion through the crossing angle, leading to
synchro-betatron resonances. This coupling affects the co-
herence in two ways: first the additional degree of freedom
weakens the coherence and reduces the Yokoya factor. Sec-
ondly, since the synchrotron tune (Qs = 0.00212) is com-
parable to the beam-beam tune shift, the discrete modes
can overlap with synchritron sidebands, leading to Landau

damping [3]. The finite crossing angle of ±150 µrad also
reduces the tuneshift from the head-on collision and there-
fore the Yokoya factor.
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